Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134212, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583205

RESUMO

Elevated levels of cadmium (Cd) have the ability to impede plant development. Aldo-keto reductases (AKRs) have been demonstrated in a number of plant species to improve tolerance to a variety of abiotic stresses by scavenging cytotoxic aldehydes; however, only a few AKRs have been identified to improve Cd tolerance. The OsAKR1 gene was extracted and identified from rice here. After being exposed to Cd, the expression of OsAKR1 dramatically rose in both roots and shoots, although more pronounced in roots. According to a subcellular localization experiment, the nucleus and cytoplasm are where OsAKR1 is primarily found. Mutants lacking OsAKR1 exhibited Cd sensitive phenotype than that of the wild-type (WT) Nipponbare (Nip), and osakr1 mutants exhibited reduced capacity to scavenge methylglyoxal (MG). Furthermore, osakr1 mutants exhibited considerably greater hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels, and increased catalase (CAT) activity in comparison to Nip. The expression of three isomeric forms of CAT was found to be considerably elevated in osakr1 mutants during Cd stress, as demonstrated by quantitative real-time PCR analysis, when compared to Nip. These results imply that OsAKR1 controlled rice's ability to withstand Cd by scavenging harmful aldehydes and turning on the reactive oxygen species (ROS) scavenging mechanism.


Assuntos
Aldo-Ceto Redutases , Cádmio , Oryza , Oryza/genética , Oryza/metabolismo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Cádmio/toxicidade , Cádmio/metabolismo , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , Aldeídos/metabolismo , Catalase/metabolismo , Catalase/genética , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Malondialdeído/metabolismo , Estresse Fisiológico , Aldeído Pirúvico/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Inativação Metabólica
2.
Phys Chem Chem Phys ; 26(12): 9295-9308, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38469695

RESUMO

Understanding selectivity mechanisms of inhibitors towards highly homologous proteins is of paramount importance in the design of selective candidates. Human aldo-keto reductases (AKRs) pertain to a superfamily of monomeric oxidoreductases, which serve as NADPH-dependent cytosolic enzymes to catalyze the reduction of carbonyl groups to primary and secondary alcohols using electrons from NADPH. Among AKRs, AKR1B1 is emerging as a promising target for cancer treatment and diabetes, despite its high structural similarity with AKR1B10, which leads to severe adverse events. Therefore, it is crucial to understand the selectivity mechanisms of AKR1B1 and AKR1B10 to discover safe anticancer candidates with optimal therapeutic efficacy. In this study, multiple computational strategies, including sequence alignment, structural comparison, Protein Contacts Atlas analysis, molecular docking, molecular dynamics simulation, MM-GBSA calculation, alanine scanning mutagenesis and pharmacophore modeling analysis were employed to comprehensively understand the selectivity mechanisms of AKR1B1/10 inhibition based on selective inhibitor lidorestat and HAHE. This study would provide substantial evidence in the design of potent and highly selective AKR1B1/10 inhibitors in future.


Assuntos
Inibidores Enzimáticos , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , NADP/metabolismo , Aldo-Ceto Redutases/metabolismo , Inibidores Enzimáticos/farmacologia , Aldeído Redutase/metabolismo
3.
Chem Biol Interact ; 391: 110896, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301882

RESUMO

Aldo-keto reductase-7A (AKR7A) subfamily belongs to the AKR superfamily and is associated with detoxification of aldehydes and ketones by reducing them to the corresponding alcohols. So far five members of ARK7A subfamily are identified: two human members-AKR7A2 and AKR7A3, two rat members-AKR7A1 and AKR7A4, and one mouse member-AKR7A5, which are implicated in several diseases including neurodegenerative diseases and cancer. AKR7A members share similar crystal structures and protein functional domains, but have different substrate specificity, inducibility and biological functions. This review will summarize the research progress of AKR7A members in substrate specificity, tissue distribution, inducibility, crystal structure and biological function. The significance of AKR7A members in the occurrence and development of diseases will also be discussed.


Assuntos
Aldeído Redutase , Fígado , Ratos , Camundongos , Animais , Humanos , Aldo-Ceto Redutases/metabolismo , Fígado/metabolismo , Aldeído Redutase/metabolismo , Oxirredutases do Álcool/metabolismo , Especificidade por Substrato
4.
Chem Biodivers ; 21(4): e202302053, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38270380

RESUMO

Five compounds (1-5), one long-chain fatty acid (1), two thiophenes (2 and 3), one alkaloid (4), and one phenyl ester (5), were isolated from the aerial part of Echinops davuricus. The structures of the products were established by performing detailed nuclear magnetic resonance (NMR) analysis, and the structure of compound 1 was determined via high-resolution electrospray ionization mass spectrometry (HRESIMS) and NMR. Compounds 1, 4, and 5 were isolated from Echinops davuricus for the first time. Based on network pharmacology methods, AKR1B10 was selected as a key anticancer target. Compounds 1 and 5 exhibited significant AKR1B10 inhibitory activities, with IC50 values of 156.0±1.00 and 146.2±1.50 nM, respectively, with epalrestat used as the positive control (81.09±0.61 nM). Additionally, the interactions between the active compounds and AKR1B10 were evaluated via molecular docking. Ultimately, the GO and KEGG enrichment analysis indicated that the key signaling pathways associated with the active compounds may be related to the PI3K-Akt, MAPK, apoptotic, cellular senescence, and TNF signaling pathways and the human diseases corresponding to the targets are cancer. Our study reveals for the first time the anticancer properties of Echinops davuricus and provides a comprehensive understanding of its application in traditional medicine.


Assuntos
Medicamentos de Ervas Chinesas , Fosfatidilinositol 3-Quinases , Humanos , Simulação de Acoplamento Molecular , Tenrecidae , Ésteres , Ácidos Graxos , Aldo-Ceto Redutases
5.
Arch Toxicol ; 98(3): 807-820, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38175295

RESUMO

The most important dose-limiting factor of the anthracycline idarubicin is the high risk of cardiotoxicity, in which the secondary alcohol metabolite idarubicinol plays an important role. It is not yet clear which enzymes are most important for the formation of idarubicinol and which inhibitors might be suitable to suppress this metabolic step and thus would be promising concomitant drugs to reduce idarubicin-associated cardiotoxicity. We, therefore, established and validated a mass spectrometry method for intracellular quantification of idarubicin and idarubicinol and investigated idarubicinol formation in different cell lines and its inhibition by known inhibitors of the aldo-keto reductases AKR1A1, AKR1B1, and AKR1C3 and the carbonyl reductases CBR1/3. The enzyme expression pattern differed among the cell lines with dominant expression of CBR1/3 in HEK293 and MCF-7 and very high expression of AKR1C3 in HepG2 cells. In HEK293 and MCF-7 cells, menadione was the most potent inhibitor (IC50 = 1.6 and 9.8 µM), while in HepG2 cells, ranirestat was most potent (IC50 = 0.4 µM), suggesting that ranirestat is not a selective AKR1B1 inhibitor, but also an AKR1C3 inhibitor. Over-expression of AKR1C3 verified the importance of AKR1C3 for idarubicinol formation and showed that ranirestat is also a potent inhibitor of this enzyme. Taken together, our study underlines the importance of AKR1C3 and CBR1 for the reduction of idarubicin and identifies potent inhibitors of metabolic formation of the cardiotoxic idarubicinol, which should now be tested in vivo to evaluate whether such combinations can increase the cardiac safety of idarubicin therapies while preserving its efficacy.


Assuntos
Cardiotoxicidade , Daunorrubicina/análogos & derivados , Idarubicina , Pirazinas , Compostos de Espiro , Humanos , Idarubicina/toxicidade , Idarubicina/metabolismo , Aldo-Ceto Redutases , Células HEK293 , Aldeído Redutase
6.
Phytochemistry ; 219: 113974, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211847

RESUMO

Twenty-one angular dihydropyranocoumarins and a linear furanocoumarin, including four previously undescribed compounds (1-4), were isolated from the flowers of Peucedanum japonicum (Umbelliferae). The structures of 1-4, along with their absolute stereochemistry, were determined to be (3'S,4'S)-3'-O-propanoyl-4'-O-(3‴-methyl-2‴-butenoyl)khellactone (1), (3'S,4'S)-3'-O-propanoyl-4'-O-(2‴-methyl-2‴Z-butenoyl)khellactone (2), (3'S,4'S)-3'-O-propanoyl-4'-O-(2‴-methylbutanoyl)khellactone (3), and (3'S,4'S)-3'-O-(2″-methylpropanoyl)-4'-O-(3‴-methyl-2‴-butenoyl)khellactone (4) using one- and two-dimensional nuclear magnetic resonance, high-resolution electrospray ionization mass spectroscopy, and electronic circular dichroism spectroscopy. In addition, the absolute configuration of the three angular dihydropyranocoumarins (5-7) was determined for the first time in this study. Among the previously reported compounds isolated in this study, 8 and 9 were isolated for the first time from the genus Peucedanum, whereas 10 and 11 were previously unreported and had not been isolated from P. japonicum to date. Furthermore, all isolated compounds were evaluated for their aldo-keto reductase 1C1 inhibitory activities on A549 human non-small-cell lung cancer cells. Compounds 10 and 12 exhibited substantial AKR1C1 inhibitory activities with IC50 values of 35.8 ± 0.9 and 44.2 ± 1.5 µM, respectively.


Assuntos
Apiaceae , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Flores , Aldo-Ceto Redutases
7.
Life Sci ; 336: 122336, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092142

RESUMO

AIMS: Akr1A1 is a glycolytic enzyme catalyzing the reduction of aldehyde to alcohol. This study aims to delineate the role of Akr1A1 in regulating the adipo-osteogenic lineage differentiation of mesenchymal stem cells (MSCs). MAIN METHODS: MSCs derived from human bone marrow and Wharton Jelly together with gain- and loss-of-function analysis as well as supplementation with the S-Nitrosoglutathione reductase (GSNOR) inhibitor N6022 were used to study the function of Akr1A1 in controlling MSC lineage differentiation into osteoblasts and adipocytes. KEY FINDINGS: Akr1A1 expression, PKM2 activity, and lactate production were found to be decreased in osteoblast-committed MSCs, but PGC-1α increased to induce mitochondrial oxidative phosphorylation. Increased Akr1A1 inhibited the SIRT1-dependent pathway for decreasing the expressions of PGC-1α and TAZ but increasing PPAR γ in adipocyte-committed MSCs, hence promoting glycolysis in adipogenesis. In contrast, Akr1A1 expression, PKM2 activity and lactate production were all increased in adipocyte-differentiated cells with decreased PGC-1α for switching energy utilization to glycolytic metabolism. Reduced Akr1A1 expression in osteoblast-committed cells relieves its inhibition of SIRT1-mediated activation of PGC-1α and TAZ for facilitating osteogenesis and mitochondrial metabolism. SIGNIFICANCE: Several metabolism-involved regulators including Akr1A1, SIRT1, PPARγ, PGC-1α and TAZ were differentially expressed in osteoblast- and adipocyte-committed MSCs. More importantly, Akr1A1 was identified as a new key regulator for controlling the MSC lineage commitment in favor of adipogenesis but detrimental to osteogenesis. Such information should be useful to develop perspective new therapeutic agents to reverse the adipo-osteogenic differentiation of BMSCs, in a way to increase in osteogenesis but decrease in adipogenesis.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Humanos , Adipogenia/fisiologia , Osteogênese/fisiologia , Sirtuína 1/metabolismo , Diferenciação Celular/fisiologia , Lactatos/metabolismo , Aldo-Ceto Redutases/metabolismo
8.
Planta ; 258(6): 107, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897513

RESUMO

MAIN CONCLUSION: The present investigation profoundly asserted the catalytic potential of plant-based aldo-ketoreductase, postulating its role in polyketide biosynthesis and providing new insights for tailored biosynthesis of vital plant polyketides for therapeutics. Plants hold great potential as a future source of innovative biocatalysts, expanding the possibilities within chemical reactions and generating a variety of benefits. The aldo-keto reductase (AKR) superfamily includes a huge collection of NAD(P)H-dependent oxidoreductases that carry out a variety of redox reactions essential for biosynthesis, detoxification, and intermediary metabolism. The present study involved the isolation, cloning, and purification of a novel aldo-ketoreductase (AvAKR) from the leaves of Aloe vera (Aloe barbadensis Miller) by heterologous gene expression in Escherichia coli based on the unigene sequences of putative ketoreductase and cDNA library screening by oligonucleotide hybridization. The in-silico structural analysis, phylogenetic relationship, and molecular modeling were outranged to approach the novelty of the sequence. Additionally, agroinfiltration of the candidate gene tagged with a green fluorescent protein (GFP) was employed for transient expression in the Nicotiana benthamiana to evaluate the sub-cellular localization of the candidate gene. The AvAKR preferred cytoplasmic localization and shared similarities with the known plant AKRs, keeping the majority of the conserved active-site residues in the AKR superfamily enzymes. The enzyme facilitated the NADPH-dependent reduction of various carbonyl substrates, including benzaldehyde and sugars, proclaiming a broad spectrum range. Our study successfully isolated and characterized a novel aldo-ketoreductase (AvAKR) from Aloe vera, highlighting its versatile NADPH-dependent carbonyl reduction proficiency therewith showcasing its potential as a versatile biocatalyst in diverse redox reactions.


Assuntos
Aldeído Redutase , Aloe , Aldo-Ceto Redutases/genética , Aldeído Redutase/genética , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aloe/genética , Aloe/metabolismo , Filogenia , NADP/genética , Plantas/metabolismo
9.
Turk J Gastroenterol ; 34(12): 1197-1205, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823316

RESUMO

BACKGROUND/AIMS: Gastric cancer is a prevalent malignancy with unfavorable prognosis partially resulting from its high metastasis rate. Clarifying the molecular mechanism of gastric cancer occurrence and progression for improvement of therapeutic efficacy and prognosis is needed. The study tended to delineate the role and regulatory mechanism of aldo-keto reductase 1B10 (AKR1B10) in gastric cancer progression. MATERIALS AND METHODS: The relationship of AKR1B10 expression with survival rate in gastric cancer was analyzed through Kaplan-Meier analysis. The mRNA levels of AKR1B10 and integrin subunit alpha 5 (ITGA5) in gastric cancer tissues and cell lines were measured by real-time quantitative polymerase chain reaction. Protein levels of AKR1B10 and integrin subunit alpha 5 were assayed via western blot. The molecular relationship between AKR1B10 and ITGA5 was analyzed by co-immunoprecipitation assay. Cell viability was assayed through Cell Counting Kit-8, invasion and migration of tumor cells was assessed through wound healing and transwell assays. Transwell assay was utilized to detect invasion. The adhesion of gastric cancer cells was detected using cell adhesion assays. RESULTS: The results unveiled that integrin subunit alpha 5 was upregulated, while AKR1B10 was downregulated in gastric cancer tissues and cells. Overexpressing AKR1B10 hindered gastric cancer cell proliferation, migration, invasion and adhesion. It was striking that we certified the inhibitory effect of AKR1B10 on integrin subunit alpha 5 expression and their (AKR1B10 and ITGA5)) negative relationship via bioinformatics method, real-time quantitative polymerase chain reaction, and co-immunoprecipitation assays. Via rescue experiments, it was concluded that AKR1B10 served as tumor suppressor potentially by ITGA5 expression in gastric cancer. CONCLUSION: Our results indicated that AKR1B10 inhibited migration, invasion, and adhesion of gastric cancer cells via modulation of ITGA5.


Assuntos
Aldo-Ceto Redutases , Integrinas , Neoplasias Gástricas , Humanos , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Aldo-Ceto Redutases/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Gástricas/patologia
10.
Am J Pathol ; 193(10): 1603-1617, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37717980

RESUMO

Lung adenocarcinoma (LUAD) is a common subtype of primary lung cancer. Fatty acid oxidation plays a key role in LUAD development by providing energy for tumor cells. This study aimed to identify the role of ring finger protein 152 (RNF152) in LUAD. RNF152 was down-regulated in LUAD, and low RNF152 expression correlated with a poor prognosis in LUAD patients. RNF152 overexpression inhibited the proliferation and malignant phenotype of LUAD cells, whereas RNF152 knockdown exerted an opposite effect. Tumor cells overexpressing RNF152 showed less fatty acid oxidation compared with control cells, whereas RNF152 knockdown induced fatty acid uptake and oxidation. Further analysis revealed the binding reaction between RNF152 and interleukin-1 receptor-associated kinase 1 (IRAK1). RNF152 reduced the stability of IRAK1 in LUAD cells by promoting its ubiquitination. RNF152-overexpressed tumor cells exhibited a significantly lower level of Aldo-Keto reductase family 1 member 10 (AKR1B10), whereas up-regulation of IRAK1 restored the expression of AKR1B10 in RNF152-overexpressed cells. Furthermore, up-regulation of IRAK1 eliminated the antitumor effect of RNF152 in LUAD cells. Mouse xenograft models confirmed the inhibitory effect of RNF152 on the tumorigenesis and metastasis of LUAD. Taken together, RNF152 played a tumor suppressive role in LUAD by promoting IRAK1 ubiquitination and IRAK1-mediated down-regulation of AKR1B10, thereby reversing the malignant phenotype of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Quinases Associadas a Receptores de Interleucina-1/genética , Adenocarcinoma de Pulmão/genética , Regulação para Cima , Modelos Animais de Doenças , Ácidos Graxos , Neoplasias Pulmonares/genética , Aldo-Ceto Redutases , Ubiquitina-Proteína Ligases/genética
11.
J Transl Med ; 21(1): 547, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587486

RESUMO

BACKGROUND: Resistance to pemetrexed (PEM), a rare chemotherapeutic agent that can efficiently cross the blood-brain barrier, limits the therapeutic efficacy for patients with lung cancer brain metastasis (BM). Aldo-keto reductase family 1 B10 (AKR1B10) was recently found to be elevated in lung cancer BM. The link between AKR1B10 and BM-acquired PEM is unknown. METHODS: PEM drug-sensitivity was assessed in the preclinical BM model of PC9 lung adenocarcinoma cells and the BM cells with or without AKR1B10 interference in vitro and in vivo. Metabolic reprogramming of BM attributed to AKR1B10 was identified by chromatography-mass spectrometry (GC-MS) metabolomics, and the mechanism of how AKR1B10 mediates PEM chemoresistance via a way of modified metabolism was revealed by RNA sequencing as well as further molecular biology experimental approaches. RESULTS: The lung cancer brain metastatic subpopulation cells (PC9-BrM3) exhibited significant resistance to PEM and silencing AKR1B10 in PC9-BrM3 increased the PEM sensitivity in vitro and in vivo. Metabolic profiling revealed that AKR1B10 prominently facilitated the Warburg metabolism characterized by the overproduction of lactate. Glycolysis regulated by AKR1B10 is vital for the resistance to PEM. In mechanism, AKR1B10 promoted glycolysis by regulating the expression of lactate dehydrogenase (LDHA) and the increased lactate, acts as a precursor that stimulates histone lactylation (H4K12la), activated the transcription of CCNB1 and accelerated the DNA replication and cell cycle. CONCLUSIONS: Our finding demonstrates that AKR1B10/glycolysis/H4K12la/CCNB1 promotes acquired PEM chemoresistance in lung cancer BM, providing novel strategies to sensitize PEM response in the treatment of lung cancer patients suffering from BM.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Pemetrexede , Humanos , Adenocarcinoma de Pulmão/tratamento farmacológico , Aldo-Ceto Redutases , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Pulmonares/tratamento farmacológico , Pemetrexede/farmacologia , Pemetrexede/uso terapêutico
12.
Mod Pathol ; 36(11): 100303, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37580017

RESUMO

Fumarate hydratase (FH)-deficient renal cell carcinoma (RCC) is a rare and distinct subtype of renal cancer caused by FH gene mutations. FH negativity and s-2-succinocysteine (2SC) positivity on immunohistochemistry can be used to screen for FH-deficient RCC, but their sensitivity and specificity are not perfect. The expression of AKR1B10, an aldo-keto reductase that catalyzes cofactor-dependent oxidation-reduction reactions, in RCC is unclear. We compared AKR1B10, 2SC, and FH as diagnostic biomarkers for FH-deficient RCC. We included genetically confirmed FH-deficient RCCs (n = 58), genetically confirmed TFE3 translocation RCCs (TFE3-tRCC) (n = 83), clear cell RCCs (n = 188), chromophobe RCCs (n = 128), and papillary RCCs (pRCC) (n = 97). AKR1B10, 2SC, and FH were informative diagnostic markers. AKR1B10 had 100% sensitivity and 91.4% specificity for FH-deficient RCC. The nonspecificity of AKR1B10 was shown in 26.5% of TFE3-tRCCs and 21.6% of pRCCs. 2SC showed 100% sensitivity and 88.9% specificity. However, nonspecificity for 2SC was evident in multiple RCCs, including pRCC, TFE3-tRCC, clear cell RCCs, and chromophobe RCCs. FH was 100% specific but 84.5% sensitive. AKR1B10 served as a highly sensitive and specific diagnostic biomarker. Our findings suggest the value of combining AKR1B10 and 2SC to screen for FH-deficient RCC. AKR1B10+/2SC+/FH- cases can be diagnosed as FH-deficient RCC. Patients with AKR1B10+/2SC+/FH+ are highly suspicious of FH-deficient RCC and should be referred for FH genetic tests.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Neoplasias Renais/patologia , Fatores de Transcrição , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Aldo-Ceto Redutases
13.
J Gastroenterol ; 58(10): 1030-1042, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37500927

RESUMO

BACKGROUND AND AIMS: A large-scale multicenter study validated aldo-keto reductase 1B10 (AKR1B10) as a new serum marker of hepatocellular carcinoma (HCC). This study aimed to evaluate the prognostic value of serum AKR1B10 in HCC. METHODS: 273 naïve HCC patients enrolled for serum AKR1B10 tests were followed up for 2 years. Survival and clinical data were collected. Kaplan-Meier survival analysis and log-rank tests were used to estimate correlation of patient survival with serum AKR1B10. Univariate and multivariate COX regression analyses were used to evaluate the prognostic value of serum AKR1B10 level independently or in combination with other clinicopathological factors. α-fetoprotein (AFP) was analyzed in parallel for comparison. RESULTS: Serum AKR1B10 associated with tumor stage (p = 0.012), size (p = 0.004), primary tumor number (p = 0.019), and Child-Pugh classification (p = 0.003). HCC patients with a high level of serum AKR1B10 (≥ 267.9 pg/ml) had median survival (MS) of 25 months (95% confidence interval [CI] 20.788-29.212) vs. MS of 34 months (CI 28.911-39.089) in patients with normal serum AKR1B10 (p < 0.001). Univariate and multivariate COX regression analyses showed that serum AKR1B10 level was an unfavorable prognostic marker of HCC independently (HR 1.830, 95% CI 1.312-2.552; p < 0.001) or in combination with other clinical factors (HR 1.883, 95% CI 1.264-2.806; p = 0.002), such as TNM stage, tumor size and portal invasion. In the same cohort of HCC patients, AFP exhibited prognostic value at a cut-off of 400 ng/ml, but not at 20 ng/ml and 200 ng/ml. CONCLUSIONS: Serum AKR1B10 is a new prognostic marker of HCC, better than AFP.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Aldo-Ceto Redutases , alfa-Fetoproteínas , Neoplasias Hepáticas/patologia , Aldeído Redutase , Biomarcadores Tumorais/análise , Prognóstico
14.
Neoplasma ; 70(3): 319-332, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37498066

RESUMO

Aldo-keto reductases (ARKs), a group of reductases that rely on nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) to catalyze carbonyl, are widely found in various organisms, which play an important role in the physiological and pathological processes of human. Aldo-keto reductase family 1 member C2 (AKR1C2) as a member of the human ARKs family, can regulate steroid hormones and is abnormally expressed in many cancers. According to whether the tumor can be affected by hormones, we divide malignancies into hormone-dependent and hormone-independent types. Studies have shown that AKR1C2 is involved in regulating tumor invasion, migration, and other malignant phenotypes, eliminating reactive oxygen species (ROS), promoting chemotherapy resistance of tumor cells, and has prognostic value in some cancers. Here, we focus on the role and clinical significance of AKR1C2 in different types of tumors.


Assuntos
Neoplasias , Humanos , Prognóstico , Aldo-Ceto Redutases/genética , Neoplasias/tratamento farmacológico , Resistência a Medicamentos , Hormônios , Hidroxiesteroide Desidrogenases/genética
15.
Biochem Biophys Res Commun ; 674: 133-139, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37419034

RESUMO

The number of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) patients persists even under nucleos(t)ide analogues (NAs) treatment. Aldo-keto reductase family 1 member B10 (AKR1B10) expression has been reported in advanced chronic liver diseases as well as cancer tissues. We observed an association between related to HCC incidence and serum AKR1B10 by analyzing patients under treatment with NAs. Serum AKR1B10 levels measured by ELISA were higher in HCC cases under NA treatment compared with non-HCC cases and were associated with lamivudine- and adefovir pivoxil-, but not entecavir- or tenofovir alafenamide-treated cases. The latter drugs did not increase AKR1B10 values even in HCC cases, suggesting that they influence the reduction of AKR1B10 in any cases. This analysis was supported by in-vitro examination, which showed reduced AKR1B10 expression by entecavir and tenofovir via immunofluorescence staining. In conclusion there was a relationship between HBV-related HCC incidence and AKR1B10 under nucleos(t)ide analogues, especially in the use of lamivudine and adefovir pivoxil, but entecavir and tenofovir had suppressive effects of AKR1B10.


Assuntos
Membro B10 da Família 1 de alfa-Ceto Redutase , Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Humanos , Hepatite B Crônica/complicações , Hepatite B Crônica/tratamento farmacológico , Neoplasias Hepáticas/patologia , Lamivudina/uso terapêutico , Carcinoma Hepatocelular/patologia , Tenofovir , Antivirais/farmacologia , Antivirais/uso terapêutico , Aldo-Ceto Redutases
16.
Biosci Rep ; 43(10)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37039038

RESUMO

BACKGROUND: Immunotherapy has brought new hope to gastric cancer (GC) patients. Exploring the immune infiltration pattern in GC and the key molecules is critical for optimizing the efficacy of immunotherapy. Aldo-keto reductase family 1 member B10 (AKR1B10) is an inflammatory regulator and is closely related to the prognosis of patients with GC. However, the function of AKR1B10 in GC remains unclear. METHODS: In the present study, the CIBERSORT algorithm was used to analyze the immune infiltration pattern in 373 samples in the Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) were seared by combing the TCGA database and the Gene Expression Omnibus (GEO) database, and the key molecule AKR1B10 was identified by weighted gene coexpression network analysis (WGCNA). The biological functions of AKR1B10 in stomach adenocarcinoma (STAD) were investigated in vitro. RESULTS: Macrophage polarization was the main immune infiltration pattern in GC, and the state of macrophage polarization was closely related to the pathological grading of GC and the clinical stage of patients. AKR1B10, MUC5AC, TFF2, GKN1, and PGC were significantly down-regulated in GC tissues. Low AKR1B10 expression induced M2 macrophage polarization and promoted the malignant phenotype of GC. CONCLUSION: M2 macrophage polarization is the main immune infiltration pattern in GC. Low AKR1B10 expression induces M2 macrophage polarization and promotes the malignant transformation of GC.


Assuntos
Hormônios Peptídicos , Neoplasias Gástricas , Humanos , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fenótipo , Macrófagos/metabolismo
17.
Zhongguo Zhong Yao Za Zhi ; 48(3): 744-751, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872238

RESUMO

This study analyzes the impact of echinacoside(ECH) in the proliferation, metastasis and adriamycin(ADR) resistance of breast cancer(BC) MCF-7 cells via the modulation of aldo-keto reductase family 1 member 10(AKR1B10)/extracellular signal-regulated kinase(ERK) pathway. The chemical structure of ECH was firstly confirmed. MCF-7 cells were treated with different concentration(0, 10, 20, 40 µg·mL~(-1)) of ECH for 48 h. Western blot was used to analyze expression of AKR1B10/ERK pathway-associated proteins and cell counting kit-8(CCK-8) assay to determine cell viability. MCF-7 cells were collected and classified into control group, ECH group, ECH + Ov-NC group, and ECH + Ov-AKR1B10 group. Then Western blot was employed to analyze the expression of AKR1B10/ERK pathway-associated proteins. CCK-8 and 5-ethynyl-2'-deoxyuridine(EdU) assay were used to examine cell proliferation. Cell migration was appraised with scratch assay, Transwell assay, and Western blot. Eventually, MCF-7 cells were treated with ADR for 48 h to induce ADR resistance. Cell viability was tested by CCK-8 assay and cell apoptosis was estimated based on terminal-deoxynucleoitidyl transferase mediated nick end labeling(TUNEL) assay and Western blot. Based on Protein Data Bank(PDB) and molecular docking, the binding affinity of ECH to AKR1B10 was assessed. Various doses of ECH decreased the expression of AKR1B10/ERK pathway-associated proteins in a dose-dependent manner and declined cell viability compared with the control group. Compared with the control group, 40 µg·mL~(-1) ECH blocked the AKR1B10/ERK pathway in MCF-7 cells and inhibited the proliferation, metastasis and ADR resistance of the cells. Compared with the ECH + Ov-NC group, ECH + Ov-AKR1B10 group showed the recovery of some biological behaviors of MCF-7 cells. ECH also targeted AKR1B10. ECH can inhibit the proliferation, metastasis, and ADR resistance of BC cells by blocking AKR1B10/ERK pathway.


Assuntos
Neoplasias , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Transdução de Sinais , Aldo-Ceto Redutases
18.
Cancer Sci ; 114(8): 3101-3113, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36951402

RESUMO

AKR7A3 is a member of the aldo-keto reductase (AKR) protein family, whose primary purpose is to reduce aldehydes and ketones to generate primary and secondary alcohols. It has been reported that AKR7A3 is downregulated in pancreatic cancer (PC). However, the mechanism underlying the effects of AKR7A3 in PC remains largely unclarified. Here, we explored the biological function, molecular mechanism and clinical relevance of AKR7A3 in pancreatic ductal adenocarcinoma (PDAC). AKR7A3 expression was downregulated in PDAC compared with adjacent normal tissues, and the lower AKR7A3 expression was related to poor prognosis. In addition, our results demonstrated that AKR7A3 could be a potential diagnostic marker for PDAC, especially in the early stages. Knockdown of AKR7A3 promoted PDAC progression and chemoresistance, while inhibiting autophagy flux. Mechanistically, AKR7A3 affected the metastasis, autophagy, and chemoresistance of PDAC by regulating PHGDH. Overall, the present study suggests that AKR7A3 inhibits PDAC progression by regulating PHGDH-induced autophagy. In addition, AKR7A3 inhibits chemoresistance via regulating PHGDH and may serve as a new therapeutic target for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Prognóstico , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , Autofagia/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Pancreáticas
19.
Appl Biochem Biotechnol ; 195(8): 5136-5157, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36847982

RESUMO

The aim of this research is to investigate the quantum geometric properties and chemical reactivity of atropine, a pharmaceutically active tropane alkaloid. Using density functional theory (DFT) computations with the B3LYP/SVP functional theory basis set, the most stable geometry of atropine was determined. Additionally, a variety of energetic molecular parameters were calculated, such as the optimized energy, atomic charges, dipole moment, frontier molecular orbital energies, HOMO-LUMO energy gap, molecular electrostatic potential, chemical reactivity descriptors, and molecular polarizability. To determine atropine's inhibitory potential, molecular docking was used to analyze ligand interactions within the active pockets of aldo-keto reductase (AKR1B1 and AKR1B10). The results of these studies showed that atropine has greater inhibitory action against AKR1B1 than AKR1B10, which was further validated through molecular dynamic simulations by analyzing root mean square deviation (RMSD) and root mean square fluctuations (RMSF). The results of the molecular docking simulation were supplemented with simulation data, and the ADMET characteristics were also determined to predict the drug likeness of a potential compound. In conclusion, the research suggests that atropine has potential as an inhibitor of AKR1B1 and could be used as a parent compound for the synthesis of more potent leads for the treatment of colon cancer associated with the sudden expression of AKR1B1.


Assuntos
Atropina , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Atropina/farmacologia , Aldo-Ceto Redutases
20.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768194

RESUMO

Steroid hormones synchronize a variety of functions throughout all stages of life. Importantly, steroid hormone-transforming enzymes are ultimately responsible for the regulation of these potent signaling molecules. Germline mutations that cause dysfunction in these enzymes cause a variety of endocrine disorders. Mutations in SRD5A2, HSD17B3, and HSD3B2 genes that lead to disordered sexual development, salt wasting, and other severe disorders provide a glimpse of the impacts of mutations in steroid hormone transforming enzymes. In a departure from these established examples, this review examines disease-associated germline coding mutations in steroid-transforming members of the human aldo-keto reductase (AKR) superfamily. We consider two main categories of missense mutations: those resulting from nonsynonymous single nucleotide polymorphisms (nsSNPs) and cases resulting from familial inherited base pair substitutions. We found mutations in human AKR1C genes that disrupt androgen metabolism, which can affect male sexual development and exacerbate prostate cancer and polycystic ovary syndrome (PCOS). Others may be disease causal in the AKR1D1 gene that is responsible for bile acid deficiency. However, given the extensive roles of AKRs in steroid metabolism, we predict that with expanding publicly available data and analysis tools, there is still much to be uncovered regarding germline AKR mutations in disease.


Assuntos
Mutação em Linhagem Germinativa , Oxirredutases , Masculino , Humanos , Aldo-Ceto Redutases/genética , Oxirredutases/metabolismo , Esteroides/metabolismo , Hormônios , Proteínas de Membrana/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA